TPS2346
 
SLUS529  MAY 2002
25
www.ti.com
APPLICATION INFORMATION
Due to the potential three-phase nature of the load current ramp (refer to Figure 20), the increasing load voltage
may also have three distinct periods. The first phase is during the slow turn-on period at the start of each IRAMP
cycle. Depending on a number of factors, significant voltage ramping may or may not occur during this time.
For verification of the fault timeout delay, the worst case situation is no appreciable load charging (i.e., a longer
overall charge time); therefore it is assumed that no voltage ramp occurs here.
The next phase is the linear load current ramp period. For any device channel x, if the IMAX level is not reached
while charging a given load capacitor of C
Lx
, then the time to reach the input dc level, V
INx
, is estimated by
equation (8).
t
SSx
+
2 C
Lx
  C
IRAMP
  K
X
  R
SNSx
  V
INx
58 mA
where:
K
X
 = 67.5 for Channels 1, 2, and 3, and
K
X
 = 7.5 for Channel 4.
For example, assuming the 5-V back-end plane in this application has 220-礔 bulk capacitance, the anticipated
typical ramp-up time is about 1.41 ms.
During inrush slewing, the load current ramp tracks the voltage ramp on the IRAMP capacitor, up to a voltage
of about 1.35 V on the IRAMP pin. Therefore, the time duration of this ramp activity, t
IRAMP
, is given by
equation (9).
t
IRAMP
+
C
IRAMP
 
(
1.25 V
)
58
where:
C
IRAMP
 is in microfarads.
If, for any channel, the time for soft-start charging of the load voltage is greater than the current ramp period,
(t
SSx
 > t
IRAMP
), back-end plane ramp-up completes at the dc IMAX level. In this case, the following procedure
can be used to estimate load ramp-up time.
First, equation (10) is used to determine the load voltage level, v
Lx
(t), attained during the current ramp period.
v
Lx
t
IRAMP
+
58 mA
2 C
Lx
  C
IRAMP
  K
X
  R
SNSx
 
t
IRAMP
2
Once this voltage level is known, it can be used to estimate the additional charging time required at constant
current to reach the input dc potential, t
CCx
. This time is calculated from equation (11).
t
CCx
+
C
Lx
 
V
INx
* V
Lx
t
IRAMP
IMAXx
The sum of t
IRAMP
 and t
CCx
 can then be used to estimate the total load ramp-up time for Channel x.
(8)
(9)
(10)
(11)
相关PDF资料
TPS24711DGSR IC CTRLR HOT SWAP 2.5-18V 10MSOP
TPS2491DGSG4 IC POS HV HOT-SWAP CTRLR 10-MSOP
W83772G IC H/W MONITOR 8-TSSOP
W83L786G IC H/W MONITOR 28-SSOP
X96011V14IZ IC SENSOR TEMP BIAS SGL 14-TSSOP
XR4151CP-F IC CONV VF/FV 8PDIP
XRP7714ILB-0X14-F IC REG 5OUT BCK/LINEAR 40TQFN
XRP7740ILB-0X18-F IC REG 5OUT BCK/LINEAR 40TQFN
相关代理商/技术参数
TPS2350D 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
TPS2350DG4 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
TPS2350DR 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
TPS2350DRG4 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
TPS2350EVM 功能描述:电源管理IC开发工具 Telecom -48V OR-ing Diode RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
TPS2350PW 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube
TPS2350PW 制造商:Texas Instruments 功能描述:HOT SWAP CONTROLLER ((NW)) 制造商:Texas Instruments 功能描述:IC, HOT SWAP POWER MANAGER, 14-TSSOP
TPS2350PWG4 功能描述:热插拔功率分布 Pwr Mngr for Redund -48V Supplies RoHS:否 制造商:Texas Instruments 产品:Controllers & Switches 电流限制: 电源电压-最大:7 V 电源电压-最小:- 0.3 V 工作温度范围: 功率耗散: 安装风格:SMD/SMT 封装 / 箱体:MSOP-8 封装:Tube